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OVERVIEW

« SIMPLIFICATION OF HIGHER-DIMENSION DYNAMICAL
SYSTEMS VIA NPCA NEURAL NETWORKS

« APPLICATION TO REACTIVE FLOWS (COMBUSTION)
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COMPETING TECHNIQUES

STEADY STATE APPROXIMATION

PARAMETER LUMPING

ILDM-CPS

SINGULAR PERTURBATION THEORY

CENTER MANIFOLD REDUCTION
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Objective

Implement Non-Linear PCA (NPCA)
PCA-Principal Component Analysis
NPCA Implemented as Neural Network
Speed Up Training of NPCA via
Techniques of Kernel Smoothing
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OUTLINE

e INTRODUCTION-Neural Network Basics

« NONLINEAR PRINCIPAL COMPONENT ANALYSIS

« DETAILED MATHEMATICAL ANALYSIS

« RESULTS:

. . IMPLEMENTATION: SAMPLE MECHANISM)

e BRIEF DESCRIPTION OF FLOW SOLVER — KEN JOHNSON
e CONCLUSIONS
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Neural Network Basics..1

o Artificial NN Consists of Computational Units
Called Neurons

 Receive a Number of Input Signals
 Produce an Output Signal
 Real Valued Functions on R"

h(x) = o(W' X +b)
Xeij"
w' o= (w,wW,..W)ej"
bej

o(Xx)—is—known —as — sigmoid — function
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Neural Network Basics..2

« Neuron
Input Output
X1L w)(1 h
A, | w)(2> 1 i—-—h
(3L | X, :

Schematic of a Neuron
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Neural Networks Basics...3

e Single Neuron (also known as Perceptron) Can
only estimate linear functions.

 For General Non-Linear Problems MultiLayer
Perceptrons (MLP-NN) are usually used.

e Feedforward Neural Network with one Hidden

Layer Containing k neurons approximates a Real
Valued Non-Linear Function on R" as

m(X) =Zklcia(wfx+b,)+co

symbols — as — above — with
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Neural Networks Basics...4

h..1,C,G..C €

e W’s,b’s,c’s are parameters that specify a NN
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Neural Networks Basics...5

Forward
pass

Ey = error=(actual—(¥Kcomputed
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Neural Networks Basics...6

Back
pass
wi; = wjj ' + Awj

|

Awy; = nb;z; + alw}™

'

6;=hi(1-h;) ) (Ews)

|

{  SE— T n

|

Awly = néch; + alwj’

O = (true — yk)yk(1 — )
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Neural Networks Basics...7

e Given (iid) Training Data, Chosen at Random from
a population (X,Y) {(X;,Y))...(X, ,Y 1, )}

« The Parameters of the Network are chosen to
minimize the empirical L, risk

1 2
ajle|m(xj)—\(j|
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Neural Networks Basics...8

« There are No Practical Algorithmic for finding the
Global Minimum of L,

e Algorithm Described above is the Popular
BackPropagation

« Back Propagation (using steepest descent) often
converges to a local minimum

PVAMU



PVAMU/BNA CFD Institute

Nonlinear Principal Component Analysis (NPCA)

« 1. Need for Mechanism Reduction
 Typically can consists of >500 species
e« >2000 elementary chemical reactions
o 2. Full chemistry model will have to solve
« >500 coupled Differential Equations
« Computationally prohibitive
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NPCA...2.

3. Most reaction state space maybe redundant

« Active space may exist as manifolds of lower
dimension

« 4. NPCA global transformation mapping from
 High dimensional state space (n) to
« Low dimensional manifold (m)
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NPCA...3

e 5. Let:
Xeij"
Yej"
m<n
X = f(Y)

e Intrinsic Dimensionality of Data really m not n
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NPCA-NN...4

G: X =Y
H:Y > X
HoG : X —» X

 Need sufficient x-data points in state space -
a number of representative trajectories
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Generating Trajectory Data

 Need representative data within flammability
limits of a given fuel

e Can use D.O.E. Software

 Trajectories Generated at Random
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NPCA-NN Algorithm

e Consists of:
« Two standard Multilayered Perceptrons (MLP)
 First network implements G
 Second network implements H

« The “Bottleneck Layer” is the reduced
dimension
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NPCA-NN Schematic

’_ Bottleneck ’ :
ARG et
v 0~\<‘)’>‘

NN
. Ve /,‘c{-:

Layer L
: ol Qutput
Layer Layer
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Training In stages

 Accelerates convergence by several orders of
maghnitudes

 Problem: Combining Networks is a non-linear
operation

« Several methods of combining available - still
active area of research
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Results

e Test Mechanisms

— Bromide acid synthesis
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Bromide acid synthesis Mechanism

Brz—;—c—-la» 2Br
:213r-53-13r2

>5r 28 7y,

H 4+ Br = ey
P28 5 s By

d [dB;’TE] — ko [Br]® — k1 [Brs]
d Eﬁ?‘] = 2k, [Bra] — 2k2 [Br]® + ke [HBr] — ks [H] [Br]
d[H2] 2
——:ZEE———4k4[}3] ‘-JkB[jgb]
d([ifl = 2k3 [H2] — 2k4 [H]? + ke [HBr] — ks [H] [Br]
ﬂl;_ftir] R [P EY] — R [ FE BT

ki =9.2F — 5, ko = 4.0FE15, k3 — 9.2E — 5
ks = 4.0F15, ks = 1.0E15, k¢ —:1.0E — 5
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Results-1

[ | R A i imac sz | ek e e | e L ) R R 77, R e T 100
/ Z
0.04 M - 0.98
i H
=
k. :
"g -1 0.86
L‘i: p
4
20'02 |
- 0.94
<1 0.92
0.00Q
o TR A L e | oo gl koG f oS o g g R Tl b g SRR : 090
0.0 10000 0 20000 0 30000.0 40000.0 50000.0 60000.0 70000 0
Time, S

PVA
b e N Bl oj97



PVAMU/BNA CFD Institute

PVAMU

1.00E+00

9.00E-01

B.00E-01

7.00E-01

6.00E-01 -

5.00E-01

4.00E-01 -

3.00E-01

2.00E-01

1.00E-01

0.00E+0D0

Results-2

B

| —+— Species 1 —=— S1-Model |

25

CFD 97-020-25/mms/4/7-9/97



PVAMU/BNA CFD Institute

Results-3
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Function Approximation...1

We have a population consisting of random
vectors (X,Y). Xis R"—valued and y is R-valued

Looking for a function
f: R"->R

Our Criteria for finding f is that the expectation of
L , norm (risk) is small

Note L , = |f(X)-Y|?, is also random
Let m(x) be the function that minimizes E |f(X)-Y|?

Function m(x) is unknown, we only have
sampled data to estimate it.
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Function Approximation...2

 Given afunction g(x) of a random variable x

Elg()] = [ g(x)P(x)dx

Where P(x) is the distribution or density of
X

PVAMU
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Function Approximation...3

Let ﬁ(X) be an approximation of m(x) using data
~ 2 A 2 2
ED )-Y] }: [ F)-me0) POgasc+Ejme) Y]

rﬁ(x) = m(x) if the first term on right, L,=0

PVAMU
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Function Approximation...4

« The important term P(X) is the distribution, or
density of X. It is usually also estimated from
data.

A popular approach is termed Kernel Smoothing.

KED)
 Define a Kernel function h ’having compact
support and symmetric about origin

Aiso [K(x)d(x) =1

PVAMU
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Function Approximation...5

The Density can be approximated from data

JORED S Lty

mh 3
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Function Approximation...6

Now how do we Estimate m(x) from data

Several different approaches have been
developed

« Parametric
« Non-Parametric Approaches
Examples of Non-Parametric methods
 Neural Networks(NN)
Radical Basics Functions Networks

Orthogonal series methods (including
wavelets)

Least squares Estimates using splines
Local Polynomial Kernel Estimates
Our focus is on NN approaches
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Function Approximation...7

 From statistical theories of regression m(x) can be

defined as  m(x) =E(Y | X =X) =ij(y\ X)dy

_JyP&xy)dy
| PO, y)dy

* P(X,y) Is the joint density of (X,Y). It can be shown
that the above can be estimated from data as

1h K(X hX jY.
fi(x) = 0 =

— i m K(X_Xij
mh 45 h
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Function Approximation...8

This is known as the Nadaray and Watson
Estimator (NWE).

It is the basis of the Generalized Regression
Neural Network. (GRNN).

One major advantage of this NN is that estimates
of Y are obtained directly without any training.

We have Chosen to Study this Network and find
ways of incorporating the Desirable Properties in
our Data Reduction Model- NPCA-NN



PVAMU/BNA CFD Institute

Schematic of GRNN
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Further Mathematical Analysis of GRNN

* In Classical Parametric Statistics, L, Is also
termed the Mean Squared Error (MSE).

MSE (Y = E (- m)*

« Which can be decomposed into Variance and
squared Bias

MSE (M) = Var (kY + [Erh"— mT
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Further Mathematical Analysis of GRNN..2

 With a Change of Variable Let

Kh(xixi):%K(x_Xij

h

« To Compute MSE(M) we need the mean and
variance of

m

PVAMU
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Further Mathematical Analysis of GRNN..3

« The (NW)-Estimator is once again

1hZ (X_hXin
h;K(X_hXij

 Note that the denominator is the density estimate
of P(X)

m(Xx) =

PVAMU
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Further Mathematical Analysis of GRNN..4

e |e

m

L (X=X 1 B
P‘(X):%;K( h j_m;Kh(X Xi)

« The (NW)-Estimator is Linear and can be written
as:
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Further Mathematical Analysis of GRNN..5

« Therefore Means and Variance is easily
computed m

E[m(x)]=> vim(x,)

Var [ (x)] Il(z 2 j

e le you are smoothing the points (x;,m(x;)) rather
than (X,,Y;)
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Further Mathematical Analysis of GRNN..6

 |In Computing Means and Variance of NW-Estimator,
Denominator and Numerator are treated separately ie for

E[PR] =B X X)

Var| p(x)] :%VarKh (X, X)

e Variance can be written as: variance = 2"d moments —
(mean)?

« To proceed, convolution is used followed by Taylor series
expansion. Derivation is long

PVAMU
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Further Mathematical Analysis of GRNN..7

e Final Theorem is:
 Bias Term: Let u=x-X

2 ()P (X) |h° ¢, 2
P(Y) j > j u°K (u)du

(m"(x) +

e Variance Term
o (X)
P (x)mh

jKﬁundu

PVAMU
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Further Mathematic Analysis of GRNN...8

« These analysis answer two important concepts:

Consistency and Rate of Convergence of NW-
Estimator.

e |n addition, In CFD of Reactive Flows, we want to
look at the Bias terms.

« How does the Bias term depend on the Pattern of
design points P(x) asymptotically?

PVAMU
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Further Mathematic Analysis of GRNN...9

PVAMU

Can you choose weight function K(u) such that the Bias is
iIndependent of P(x) ? Answer Yes-> Grid Free Solution of
CFD using Neural Network

An Estimator is said to be Consistent if as the sample size
grows:
lim j [(x)—m(x)] P()dx =0
M—>0

Consistency does not tell us How Fast L , approaches 0.
Here we look at the expectation of L , error.

E j (x) —m(x)| P(x)dx

Difficult to analyze without imposing some smoothens
assumptions on m(x)
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GRNN Results

e 3-Dimensional Test Function

F (X%, %) =A% +25 +3 —XX +X,%—5% —9%+X,

PVAMU
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The Euler Solver
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Overview

e The Euler Solver
 General Layout of the Program
 Results
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The Euler Solver

« The general incompressible flow of the governing
equation:
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The 2D Euler Equation
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Euler equations in conserved form
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General Layout of the program

Program requirements
Boundary and Initial Conditions
Solution procedure

Initializing the variables
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Program Requirements

« The grids should be generated independently and
read in as part of the initial data.

 The initial values must be made available to the
program and part of the initial data as well.

« The time-steps should be chosen according to
CFD criteria for stability.
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Boundary and Initial Conditions

« The boundary conditions are calculated using
extrapolation, interpolation and in some cases
algebraic formulae.

e Since the Euler solver uses the time marching
approach, it requires initial values of
temperature, pressure etc.
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Solution Procedure

e Step one
 Set up the grid and the initial guess

— These information are read into the
program.

— Apart form the grid and initial guess
various other data must be fed in so that
the problem is well defined

— Boundary conditions

— Coefficients of the Runge-Katta
scheme

— Relaxation parameter
— Printing criteria etc

PVAMU
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Solution Procedure 11

e Step two
« Computation of all relevant quantities

— Cell areas and projective lengths along
the two Cartesian axes

— Radii of curvature at points of the blade
surfaces.
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Initializing the variables

The variables to initialize are the ones that will be
required in the approximating of the continuity,
momentum and energy.

PVAMU



PVAMU/BNA CFD Institute

Problem

« The code was tested on a simple problem, which was to
solve for steady flow of air through a plane symmetrical
diffuser. In this problem the viscosity and density of air
were taken to be 1.91 X 10 -5 kg/ms and 1.21 kg/m3,
respectively. The flow profile at the inlet was assumed to be
flat with a bulk velocity of 160 m/s. The flow at the outlet
was assumed to be fully developed..
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Plane Symmetrical Diffuser
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Results for Mach Number

Mach No.
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Mach Number
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Results Static Pressure Distribution

Pressure

Pressure, NIMA2
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Conclusion

« Demonstrated the NPCA reduction technique for
mechanism reduction on sample reaction
mechanism

 Details of Mathematical Analysis Presented
« Description of Test Flow Solver
 Work is in progress

« Acknowledge the support of DOE Under grant
numbers:

« DE-FG26-00NT-40830
e DE-FG26-03NT-41913
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